Skip to main content

Carl R. Woese Institute for Genomic Biology

Where Science Meets Society

Core Facilities

Core NMR User's Publications

(Please let us know if you publish using data from the core.)

  1. Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, Yeo WL, Cobb RE, Enghiad B, Ang EL, Zhao H., 2017. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nature Chemical Biology, doi: 10.1038/nchembio.2341. [Epub ahead of print]
  2. Huang Z, Wang KA, van der Donk WA., 2016. New Insights into the Biosynthesis of Fosfazinomycin. Chemical Science, 7(8):5219-5223.
  3. Thomas AA, Denmark SE., 2016. Pre-transmetalation intermediates in the Suzuki-Miyaura reaction revealed: The missing link. Science, 352(6283):329-32.
  4. Dunbar, K.L., Tietz, J.I., Cox, C.L., Burkhart, B.J. and Mitchell, D.A., 2015. Identification of an Auxiliary Leader Peptide-Binding Protein Required for Azoline Formation in Ribosomal Natural Products. Journal of the American Chemical Society, 137(24), pp.7672-7677.
  5. Ju, K.S., Gao, J., Doroghazi, J.R., Wang, K.K.A., Thibodeaux, C.J., Li, S., Metzger, E., Fudala, J., Su, J., Zhang, J.K. and Lee, J., 2015. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proceedings of the National Academy of Sciences, 112(39), pp.12175-12180.
  6. Peck, S.C., Chekan, J.R., Ulrich, E.C., Nair, S.K. and van der Donk, W.A., 2015. A Common Late-Stage Intermediate in Catalysis by 2-Hydroxyethyl-phosphonate Dioxygenase and Methylphosphonate Synthase. Journal of the American Chemical Society, 137(9), pp.3217-3220.
  7. Huang, Z., Wang, K.K.A., Lee, J. and van der Donk, W.A., 2015. Biosynthesis of fosfazinomycin is a convergent process. Chemical Science, 6(2), pp.1282-1287.
  8. Huang, H., Carter, M.S., Vetting, M.W., Al-Obaidi, N., Patskovsky, Y., Almo, S.C. and Gerlt, J.A., 2015. A General Strategy for the Discovery of Metabolic Pathways: d-Threitol, l-Threitol, and Erythritol Utilization in Mycobacterium smegmatis. Journal of the American Chemical Society, 137(46), pp.14570-14573.
  9. Zhang, X., Kumar, R., Vetting, M.W., Zhao, S., Jacobson, M.P., Almo, S.C. and Gerlt, J.A., 2015. A unique cis-3-hydroxy-l-proline dehydratase in the enolase superfamily. Journal of the American Chemical Society, 137(4), pp.1388-1391.
  10. Lambrecht, M.J., Brichacek, M., Barkauskaite, E., Ariza, A., Ahel, I. and Hergenrother, P.J., 2015. Synthesis of dimeric ADP-ribose and its structure with human poly (ADP-ribose) glycohydrolase. Journal of the American Chemical Society, 137(10), pp.3558-3564.
  11. Gao, J., Ju, K.S., Yu, X., Velásquez, J.E., Mukherjee, S., Lee, J., Zhao, C., Evans, B.S., Doroghazi, J.R., Metcalf, W.W. and van der Donk, W.A., 2014. Use of a phosphonate methyltransferase in the identification of the fosfazinomycin biosynthetic gene cluster. Angewandte Chemie International Edition, 53(5), pp.1334-1337.
  12. Cioni, J.P., Doroghazi, J.R., Ju, K.S., Yu, X., Evans, B.S., Lee, J. and Metcalf, W.W., 2014. Cyanohydrin phosphonate natural product from Streptomyces regensis. Journal of natural products, 77(2), pp.243-249.
  13. Evans, B.S., Zhao, C., Gao, J., Evans, C.M., Ju, K.S., Doroghazi, J.R., van der Donk, W.A., Kelleher, N.L. and Metcalf, W.W., 2013. Discovery of the antibiotic phosacetamycin via a new mass spectrometry-based method for phosphonic acid detection. ACS chemical biology, 8(5), pp.908-913.
  14. Bougioukou, D.J., Mukherjee, S. and van der Donk, W.A., 2013. Revisiting the biosynthesis of dehydrophos reveals a tRNA-dependent pathway. Proceedings of the National Academy of Sciences, 110(27), pp.10952-10957.
  15. Cooke, H.A., Peck, S.C., Evans, B.S. and van der Donk, W.A., 2012. Mechanistic investigation of methylphosphonate synthase, a non-heme iron-dependent oxygenase. Journal of the American Chemical Society, 134(38), pp.15660-15663.
  16. Metcalf, W.W., Griffin, B.M., Cicchillo, R.M., Gao, J., Janga, S.C., Cooke, H.A., Circello, B.T., Evans, B.S., Martens-Habbena, W., Stahl, D.A. and van der Donk, W.A., 2012. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science, 337(6098), pp.1104-1107.