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ABSTRACT Interest in genetic diversity within and
between human populations as a way to answer questions
about race has intensified in light of recent advances in
genome technology. The purpose of this article is to apply
a method of generalized hierarchical modeling to two
DNA data sets. The first data set consists of a small sam-
ple of individuals (n 5 32 total, from eight populations)
who have been fully resequenced for 63 loci that encode a
total of 38,534 base pairs. The second data set consists of
a large sample of individuals (n 5 928 total, from 46 popu-
lations) who have been genotyped at 580 loci that encode
short tandem repeats. The results are clear and somewhat
surprising. We see that populations differ in the amount
of diversity that they harbor. The pattern of DNA diver-

sity is one of nested subsets, such that the diversity in
non-Sub-Saharan African populations is essentially a sub-
set of the diversity found in Sub-Saharan African popula-
tions. The actual pattern of DNA diversity creates some
unsettling problems for using race as meaningful genetic
categories. For example, the pattern of DNA diversity
implies that some populations belong to more than one
race (e.g., Europeans), whereas other populations do not
belong to any race at all (e.g., Sub-Saharan Africans). As
Frank Livingstone noted long ago, the Linnean classifica-
tion system cannot accommodate this pattern because
within the system a population cannot belong to more
than one named group within a taxonomic level. Am J
Phys Anthropol 139:23–34, 2009. VVC 2009 Wiley-Liss, Inc.

Richard Lewontin was the first researcher to apply
measures of genetic variability within and between
human populations to questions about human races
(Lewontin, 1972). He found in an analysis of blood group
and protein allele frequencies that relative to the total
diversity for our species, the within groups component is
85.4%, the component for populations within races is
8.3%, and the interracial component is only 6.3%. On
this basis, Lewontin concluded that human races are of
virtually no genetic or taxonomic significance. His find-
ings have had lasting impact, and many later studies
produced similar results using a similar model of popula-
tion structure with different sources of data and differ-
ent statistical methods (Michalakis and Excoffier, 1996;
Barbujani et al., 1997; Jorde et al., 2000; Romualdi
et al., 2002; Li et al., 2008).
Geneticists have renewed their interest in the variabil-

ity within and between groups in light of advances in ge-
nome technology (Bamshad et al., 2003; Burchard et al.,
2003; Cooper et al., 2003). Our current methods in
genomics have several advantages relative to the meth-
ods of the 1970s. They reveal exact DNA sequence
changes, can yield data in amounts that were unimagin-
able even a few decades ago, and allow us to make com-
parisons across related species. There is no ascertain-
ment bias associated with the patterns of diversity
detected in DNA sequencing studies (Clark et al., 2005;
Keinan et al., 2007), whereas the patterns of diversity in
single nucleotide polymorphism (SNP) marker studies
reflect the methods of SNP discovery as well as evolu-
tionary differences between populations. Studies at the
DNA level are providing new insights into genetic diver-
sity within and between human populations.
Rosenberg and colleagues analyzed 377 short tandem

repeat (STR) DNA loci in a sample of 1,052 people
(Rosenberg et al., 2002). These individuals came from 52
populations with locations throughout the world. This

study found that the component of allelic diversity
between major geographic regions accounted for only
4.3% of the total. However, the study’s findings present
us with a paradox because it was possible to use these
genotypes to classify individuals back to their regional
populations. Others have argued that Rosenberg and col-
leagues should have measured STR diversity using a dif-
ferent statistic, and offer that their favored statistic
yields a higher component of diversity between major ge-
ographic regions, that is, 9.2% (Excoffier and Hamilton,
2003). However, neither 4.3% nor 9.2% is very different
from Lewontin’s 6.3%, and the high classification success
in Rosenberg’s study is counter intuitive in comparison
with all such measures of diversity. We must now judge
taxonomic significance on a different basis than the com-
ponent of diversity between populations.
We know less about the pattern of diversity for non-

repeated DNA sequences; however, studies reporting on
DNA sequence diversity in noncoding autosomal genomic
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regions are now emerging (Yu et al., 2002; Fischer et al.,
2006; Wall et al., 2008). These studies tend to utilize
small samples of individuals that are limited in their ge-
ographic coverage. Nonetheless, these studies have pro-
vided provocative results.
Yu and colleagues collected DNA sequences comprising

25,000 nucleotides for each member in a sample of 30
individuals (Yu et al., 2002). These 25,000 nucleotides
represent 50 autosomal loci each composed of !500 con-
tiguous base pairs. Ten of these individuals were Afri-
can, 10 Asian, and 10 European. The investigators
selected individuals from each continent from different
local groups residing in widely spaced regions, but only
a single person represented each local group. This sam-
pling scheme extricates the between region component of
nucleotide diversity but it confounds the diversity within
populations with that between populations within the
same region. The unexpected result from this study is
that nucleotide diversity is greater between two African
DNA sequences than between an African DNA sequence
and a European DNA sequence, or an African DNA
sequence and an Asian DNA sequence. Thus, in compar-
ing the African sample to the European sample or the
Asian sample, the estimated between groups diversity
component is negative.
Fischer and colleagues (Fischer et al., 2006) analyzed

DNA sequences comprising 22,401 nucleotides collected
by Voight and colleagues (Voight et al., 2005) for each
member in a sample of 45 individuals. These 22,401 nu-
cleotides represent 26 autosomal loci each composed of
!860 contiguous base pairs. This sample includes 15
individuals from each of three human populations:
Hausa, Italian, and Han Chinese. This sampling scheme
provides a valid estimate of nucleotide diversity within
populations, but it confounds the diversity for popula-
tions within geographic regions with the diversity
between geographic regions. These researchers found
that the diversity between populations (including both
components) ranged from 9 to 15%, depending on the
pair of populations being compared. The interesting fea-
ture of this study is that Fischer and colleagues went on
to sequence the homologous loci in multiple samples
from two species of great apes. They found that the di-
versity between human populations exceeds that esti-
mated between Eastern (Pan troglodytes schweinfurthii)
and Central (Pan troglodytes troglodytes) subspecies of
Chimpanzee. In this light, we must either reassess the
evidence for subspecies of Chimpanzee, or else judge tax-
onomic significance on a different basis than the compo-
nent of diversity between populations.
The last four decades have also seen advances in popu-

lation genetics theory and analytical methods. These
advances are providing a better framework for drawing
inferences about evolution from diversity within and
between populations.
Hedrick showed that the between groups component of

diversity was inversely proportional to the within groups
component of diversity (Hedrick, 1999). Therefore, the
between groups component cannot be high for systems
such as STRs that are highly polymorphic within groups.
Edwards gave an example of how, by using enough
markers, classification is possible even when the
between populations variance is low for all markers
(Edwards, 2003). These two findings taken in combina-
tion explain why Rosenberg and colleagues were able to
accurately classify individuals when the between groups
component of diversity for their markers is so low.

Long and colleagues showed that partitioning diversity
into within and between groups components is sensitive
to a host of a priori assumptions (Urbanek et al., 1996;
Long and Kittles, 2003). First, the expected diversity is
the same within all populations sampled. Second, the
expected diversity between any pair of populations
within a region is the same, regardless of the region.
Third, the expected diversity between any pair of popu-
lations in different regions is the same, regardless of the
pair of regions. When these assumptions are violated,
the total diversity is underestimated, the component of
diversity within groups is over-estimated, and the com-
ponent of diversity between groups is underestimated.
Long and Kittles found that some human groups are far
more diverged than would be implied by standard com-
ponents of genetic diversity, whereas other groups are
much less diverged (Long and Kittles, 2003).
The present study revisits the question of genetic di-

versity within and between populations. We provide new
data from direct DNA sequencing of 63 noncoding loci.
The total sequence length summed over all loci is 38,534
base pairs. We analyze a total sample of 32 people,
which despite its small size, has multiple individuals
from eight local populations and multiple local popula-
tions from Africa, Europe, and Asia. We also analyze a
large set of STR data for 46 populations from Africa,
Europe, and Asia. These STR data are from the CEPH
diversity panel (Rosenberg et al., 2002), with the addi-
tion of a sample from the Gujarati of India (Rosenberg
et al., 2006). Our strategy is as follows. First, for our
DNA sequence data, we estimate components of diversity
at the same levels of hierarchical population structure
that Lewontin did (Lewontin, 1972). Second, we use an
expanded hierarchical arrangement of populations to see
i) if this arrangement achieves a significantly better fit
to the data than does Lewontin’s arrangement, and ii) to
see whether this arrangement alters Lewontin’s conclu-
sions about the apportionment of diversity within and
between human populations. Third, we repeat the first
two steps of the analysis using the STR loci. The impor-
tant question is—Are the patterns of nucleotide diversity
that we observe for DNA sequences in eight populations
changed by adding more populations assayed for a differ-
ent kind of DNA polymorphism? We note that the STR
data set includes seven of the eight populations for
which we collected DNA sequences, and it includes a
population that neighbors our eighth population.

MATERIALS AND METHODS

Samples and genetic systems
DNA sequencing. Our sample has the following compo-
sition: from Africa, (n 5 4) Biaka, (n 5 4) Yoruba, and (n
5 4) Luhya from Kenya; from Europe, (n 5 4) Iberian,
(n 5 4) Russian from Moscow; from Asia, (n 5 4) Gujar-
ati, (n 5 4) Han, and (n 5 4) Japanese. We purchased
these DNA samples from Coriell Institute for Biomedical
Research Human Diversity and HapMap Collections.
The ID numbers and population affiliations for these
samples are as follows NA10469 (Biaka), NA10470
(Biaka), NA10471 (Biaka), NA10472 (Biaka), NA18856
(Yoruba), NA19222 (Yoruba), NA19093 (Yoruba),
NA19204 (Yoruba), NA19314 (Luhya), NA19351 (Luhya),
NA19338 (Luhya), NA19376 (Luhya), NA17091 (Iberian),
NA17092 (Iberian), NA17094 (Iberian), NA17097 (Ibe-
rian), NA13820 (Moscow), NA13838 (Moscow), NA13852
(Moscow), NA13876 (Moscow), NA20854 (Gujarati),
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NA20861 (Gujarati), NA20901 (Gujarati), NA20906
(Gujarati), NA16654 (Han Chinese), NA16688 (Han Chi-
nese), NA17016 (Han Chinese), NA17020 (Han Chinese),
NA17051 (Japanese), NA17053 (Japanese) NA17057
(Japanese), and NA17060 (Japanese). For clarification,
the n 5 32 individuals in our total sample contribute 2n
5 64 copies of each locus.
We sequenced 49 of the loci that Yu et al. sequenced

(Yu et al., 2002), five loci from the W-H Li laboratory
that have not appeared in their publications, and nine
new loci that we identified using the procedure from
Chen and Li (Venter et al., 2001). A single primer pair
amplifies each locus. We designed PCR and sequencing
primers using the human reference sequence, as made
available on the UCSC genome browser (http://
genome.ucsc.edu/). Supporting Information Table 1 pro-
vides the physical map positions and PCR primer
sequences for all 63 loci. The University of Michigan
DNA sequencing core facility performed dye-terminator
sequencing for us using Applied Biosystems Big-Dye
reagents on an Applied Biosystems automated
sequencer. To ensure accuracy, we determined DNA seq-
uence for both strands for all amplicons. We used the
Seqman module in the DNASTAR package to analyze
chromatograms and perform alignments; then, we used
an original computer program to identify polymorphic
sites, calculate allele frequencies, and tabulate statistics
by population.

STR data. We also analyzed a set of autosomal STR
polymorphisms that is publicly available for a large set
of populations. We focused on a set of 46 populations
that includes all 45 African, European, and Asian popu-
lations from the 52 worldwide populations that Rosen-
berg and colleagues analyzed, plus a sample from the
Gujarati of India (Rosenberg et al., 2002, 2006). The
genotypes are available from the Marshfield Clinic
Genotyping Service (http://research.marshfieldclinic.org/
genetics/home/index.asp). The genotypes for the non-
Gujarati samples come from directly from the diversity

collection. The genotypes for the Gujarati are a subset of
the Marshfield India collection. Drs. Pragna Patel and
Noah Rosenberg kindly provided us with information
about which samples in the India collection belong to the
Gujarati ethnic group. We analyzed 580 autosomal STR
loci. This comprises the largest set of loci for which all
members of all available samples from the CEPH diver-
sity panel and the Gujarati were genotyped using the
same amplification primers. The 46 STR genotyped pop-
ulations include the Biaka, Yoruba, Kenya (Bantu speak-
ing), Moscow, Gujarati, Han, and Japanese. Our DNA
sequencing sample includes these seven populations,
plus Iberians for whom there are no STR data. For some
analyses, we focus on the STR data for the seven shared
populations augmented by the French for whom there
are STR data. We consider the French to be a useful
proxy for Iberians on the intercontinental geographic
scale considered in our analyses. Supporting Information
Table 2 identifies the STR loci and gives sample sizes
and allele frequencies for all 46 populations (including
Gujarati).

Statistical analysis
Descriptive statistics. Our basic measure for analysis
for DNA sequences is nucleotide diversity, which Nei
defines as the number of differences per site between
two copies of a locus (Nei, 1987). We speak of the nucleo-
tide diversity within a population when both copies of
the locus derive from the same local population. Simi-
larly, we speak of the nucleotide diversity between two
populations when the two copies derive from different
local populations. For STR loci, we use gene diversity as
our basic unit of analysis. Nei defines gene diversity as
the probability that two randomly drawn copies of a
locus differ in state, that is, are different alleles (Nei,
1987). We compute gene diversity within and between
populations using definitions that parallel the definitions
for nucleotide diversity.

TABLE 1. Unbiased nucleotide diversity (3100) and dA genetic distance (3100) estimatesa

Biaka Yoruba Luhya Iberian Moscow Gujarati Han Japanese

Biaka 0.086 0.096 0.090 0.098 0.094 0.092 0.099 0.093
Yoruba 0.014 0.092 0.090 0.094 0.088 0.090 0.091 0.090
Luhya 0.012 0.005 0.082 0.085 0.081 0.081 0.085 0.085
Iberian 0.037 0.023 0.016 0.073 0.064 0.071 0.071 0.075
Moscow 0.046 0.026 0.024 0.000 0.057 0.065 0.066 0.069
Gujarati 0.034 0.024 0.016 0.005 0.009 0.064 0.067 0.065
Han 0.056 0.034 0.032 0.013 0.020 0.014 0.055 0.059
Japanese 0.040 0.029 0.030 0.017 0.021 0.007 0.002 0.060
N 4 4 4 4 4 4 4 4

a Within population nucleotide diversity estimates appear on the diagonal, between population nucleotide diversity estimates
appear above the diagonal, genetic distance estimates appear below the diagonal.

TABLE 2. Treeness tests and model comparison statistics

Data set/model L df AIC P-Value Fdf1,df2 P-Value

DNA sequences
Two-level island model 184.2 33 250.2 0.000
Expanded hierarchical model 49.4 21 91.4 0.000 2.4 0.020
D 5 AICTLIM 2 AICEHM 158.8

580 STRs
Two-level island model 44,325.8 1,078 46,481.8 0.000
Expanded hierarchical model 6,149.3 993 8,135.3 0.000 6.6 0.000
D 5 AICTLIM 2 AICEHM 38,346.5
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For comparing populations, we constructed matrices
denoted RP̂ and RĤ with rows and columns equal to the
number of local populations. The matrix RP̂ contains
unbiased estimates of average nucleotide diversity and
the matrix RĤ contains unbiased estimates of average
gene diversity. Each diagonal element of a diversity ma-
trix contains the estimated diversity between sequences
within the ith population, and each off-diagonal element
of a diversity matrix contains the diversity between
sequences, the first from population i and the second
from population j. The left-subscript R on these matrices
indicates that they contain ‘‘raw’’ estimates that we
make directly from the data without using a model of
population relationships.
To investigate clustering of populations we convert the

elements of RP̂ and RĤ into genetic distance measures
defined by Nei (Nei, 1987). For nucleotide sequences,
we use the distance statistic dA ¼ pij # ðpii þ pjjÞ=2
and for STRs we use the distance statistic
Dm ¼ hij # ðhii þ hjjÞ=2.

Models and model fitting. Our strategy consists of fit-
ting hierarchical models to our nucleotide diversity and
STR gene diversity matrices. We use tree diagrams and
terminology to display our models and explain our
results. For brevity, we use the general term diversity
when describing the statistical steps because the model
fitting procedure is the same for nucleotide diversity and
STR gene diversity. We fit two hierarchical models to the
diversity matrices. Model 1 embodies two levels of strati-
fication. At the first level, an allele exists within a local
population. At the second level, a local population exists
within a geographic region. This model places three con-
straints on the diversity within and between popula-
tions. i) The expected diversity is the same within all
local populations, regardless of region. ii) The expected
diversity is same between all populations within the
same region, regardless of region. iii) The expected diver-
sity is same between all populations in different regions,
regardless of which regions the populations reside. Here-
after, we refer to Model 1 as the two-level island model,
and denote it TLIM. The TLIM is the model of popula-
tion structure used by Lewontin in his apportionment of
diversity paper (Lewontin, 1972). We note that Lewontin
used the word race to denote the level of population
structure that we call geographic region. Model 2
embodies multiple levels of stratification. We construct
Model 2 from a neighbor-joining tree (Saitou and Nei,
1987) calculated from the nucleotide sequence or STR
genetic distance matrix and then rooted at the position
that maximizes the likelihood of the tree after restricting
all branches to non-negative values. This model places
no constraints of equality on the diversity coefficients at
different positions in a tree. We call Model 2 the
expanded hierarchical model, and denote it EHM.
We use the system of equations developed by Anderson

to fit our models to the data (Anderson, 1973). This proce-
dure provides approximate maximum likelihood solutions.
Several papers give more details on the application of this
system of equations to genetic data (Cavalli-Sforza and
Piazza, 1975; Urbanek et al., 1996; Lewis and Long,
2008). Ultimately, the method produces a new estimate of
a nucleotide diversity or gene diversity matrix that is con-
tingent on the hierarchical model. We denote the model-
based diversity matrices by MP̂ and MĤ, where the left-
subscript M indicates that the estimate is contingent on
the model of population relationships.

Fixation indices. The TLIM estimates the following
three coefficients of nucleotide diversity: pW within local
populations, pB between local populations in the same
geographic region, and pT for local populations in dif-
ferent geographic regions (or equivalently, the total pop-
ulation). Three fixation indices completely summarize
diversity according to the TLIM: FSR ¼ ðpR # pwÞ=pR,
FRT ¼ ðpT # pRÞ=pT, and FST ¼ ðpT # pWÞ=pT, where FSR

quantifies diversity among local populations in the same
region, FRT quantifies diversity among regions, and FST

quantifies diversity among local populations in different
regions. These are the same fixation indices used by
others (Excoffier et al., 1992; Hudson et al., 1992). The
TLIM provides parallel results for STR gene diversity.
The equations are the same, except that gene diversity
values (h) replace nucleotide diversity (p) values.
Although, our estimation procedure is slightly different,
our gene diversity and fixation index parameters are
those defined by Weir and Cockerham (Weir and Cocker-
ham, 1984). The EHM estimates diversity coefficients at
all internal and external nodes of the tree. This situation
does not lend itself to a simple summarization of diver-
sity at different levels of the hierarchy by a few fixation
indices, but it is instructive to compare the diversity in
each local population relative to the total diversity,
which is estimated by the diversity between populations
that span the root of the tree. We use the method of
Long and Kittles (Long and Kittles, 2003) to calculate
the population-specific FST coefficients. Finally, because
fixation indices are inversely correlated with the diver-
sity within local populations, we standardize our esti-
mated fixation indices relative to their theoretical maxi-
mum values (Hedrick, 1999; Long and Kittles, 2003).
The standardized values facilitate comparing fixation
indices calculated from DNA sequences with those calcu-
lated from STRs.

Testing goodness-of-fit. We use Cavalli-Sforza and
Piazza’s treeness statistic (Cavalli-Sforza and Piazza,
1975) to test the fundamental hypothesis that the
observed matrix RP̂ or RĤ deviates from the model esti-
mated matrix MP̂ or MĤ by no more than would be
expected from genetic and statistical sampling. The tree-
ness statistic (denoted, L) approaches a chi-squared dis-
tribution under the ideal circumstances of a large num-
ber of independent alleles at different loci, each with
equal heterozygosity. The number of degrees of freedom
associated with this test is rðrþ 1Þ=2# p, where r is the
number of populations analyzed and p is the number of
parameters in the model. We note that it is unusual to
achieve the asymptotic properties of the test. The proba-
ble consequence of violating these assumptions is to
reject the null hypothesis falsely more often than the
chosen type I error rate, a. In addition to the problem of
violating assumptions, we note that the test may reject a
model because of minor deviations from treeness even
though the tree predicts the data reasonably well. In
light of these considerations, we take several measures
to assess how well a hypothesized tree fits to a data set.
We begin our assessment of model fit by comparing

observed and expected values. As noted above, the model
fitting procedure creates an estimate of a diversity ma-
trix contingent on the tree model. This enables us to plot
the raw diversity estimates against the model-generated
diversity estimates. We are also able to plot the raw
genetic distance estimates against the model-generated
genetic distance estimates.
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There are also formal methods for comparing the tree-
ness between different models that have been fitted to the
same diversity matrix. We use two of these methods. To
implement the first method of model comparison, we com-
pute Akiake’s Information Criterion (AIC) for each of the
competing models (Akaike, 1974). With respect to our tree
models, AIC 5 L 1 2p, where L is the treeness statistic
and p is the number of parameters in the model. Then we
compute D 5 AIC1 2 AIC2, where AIC2 denotes the lower
of the two AIC values. Burnham and Anderson (Burnham
and Anderson, 2002) give the following guidelines for
interpreting D: for D ' 2 there is nearly equal support for
both models, for 2 \ D \ 10 there is less support for the
worse fitting model, for D ( 10 there is virtually no sup-
port for the worse fitting model. The second method of
model comparison uses an F-test that is valid when the
test statistics for both models deviate from the chi-squared
distribution by a multiplier, and should be conservative
when the chi-squared approximation to the worse fitting
model is worse than the chi-squared approximation to the
better fitting model. For this test, F ¼ ðK1=df1Þ=ðK2=df2Þ,
where the subscript 2 denotes the better fitting model
(Lewis and Long, 2008). Both D and F take into account
differences in the number of parameters between the
competing models. Neither test is likely to favor a model
simply because the model is parameter rich.

RESULTS

DNA sequence descriptive results

The 63 loci range in size from 436 to 985 base pairs
(bp), with a median of 604 bp. In total, we sequenced
38,534 bp for each individual. All of our data are publicly
available in GenBank. We found 204 sites that carried
alternative alleles defined by a nucleotide substitution.
At 80 of the substitution sites, the minor allele occurred
as a singleton. At 26 of the substitution sites, the minor
allele occurred as a doubleton, and at 12 sites, the minor
allele occurred as a tripleton. According to Fu’s neutral
theory for stable Wright-Fisher populations (Fu, 1995),
there should be about twice as many singletons as dou-
bletons, and thrice as many singletons as tripletons. The
clear excess of singletons is a signature of population
growth (Yu et al., 2002). At the remaining 86 substitu-
tion sites, we observed more than three copies of the
minor allele.
The Sub-Saharan African populations harbor the most

diversity. This is easy to see from the allele frequency
spectrum. To illustrate this, we combined the Moscow,
Gujarati, and Han samples into a Eurasian group, and
contrasted it with Sub-Saharan Africans, as represented
by the combined Biaka, Yoruba, and Luhya. This results
in samples such that Eurasians and Sub-Saharan-Afri-
cans are both represented by n 5 12 individuals (see
Fig. 1). In these sequences, 194 sites are variable. For
the 113 variable sites with rare alleles (frequencies less
than 3/48 in the two groups combined), 73 minor alleles
are found only in the Sub-Saharan African populations,
37 are found only in Eurasians, and only three are
shared between the two groups. For the 44 variable sites
with moderate frequency minor alleles (frequencies
between 4/48 and 8/48 in the two groups combined), 21
are found only in the Sub-Saharan African populations,
seven are found only in Eurasians, and 16 are shared
between the two groups. For the 40 variable sites with
common minor alleles (frequencies between 9/48 and 24/
48 in the two groups combined), just one appears only in

the Sub-Saharan Africans, just one appears only in Eur-
asians, and 38 appear in both groups. These data make
three things clear. First, Sub-Saharan Africans harbor
many more rare variants than do Eurasians. Second, the
chance that a moderate frequency allele that appears in
Eurasians also appears in Sub-Saharan Africans (P 5
16/(7 1 16) 5 0.70) is substantially greater than the
chance that a moderate frequency allele that appears in
Sub-Saharan Africans also appears in Eurasians (P 5
16/(21 1 16) 5 0.43). Third, a common variant that
appears in either Sub-Saharan Africans or Eurasians is
likely to appear in the other group.

Diversity matrices

Table 1 gives the estimated nucleotide diversity and
genetic distances for the DNA sequence data set. Esti-
mates of nucleotide diversity within populations appear
on the major diagonal. The values in the upper triangle
portion of Table 1 give the nucleotide diversity estimates
between all pairs of populations. The values in the lower
triangle of Table 1 give the genetic distance estimates
between all pairs of populations. Supporting Information
Table 3 gives the estimates of STR gene diversity and
genetic distances for the complete 46-population data
set.

Hierarchical models

Figure 2 presents the TLIM and EHM fit to the nucle-
otide diversity matrix. Table 2 shows that the data reject
both models; however, both tests for comparing models
confirm that the EHM fits significantly better fit than
does the TLIM. The plot of raw- versus TLIM-based di-
versity coefficients in Figure 3A reveals the nature of
lack-of-fit for the TLIM. Specifically, we see that the

Fig. 1. Site frequency spectrum for n 5 12 Sub-Saharan
Africans and n 5 12 Eurasians. Rare alleles have frequencies of
3/48, or less. Moderate frequency alleles have frequencies in the
range 4/48 to 8/48. Common alleles have frequencies of 9/48 or
greater.
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TLIM i) underestimates diversity within African popula-
tions and overestimates diversity within European and
Asia populations, ii) underestimates diversity between
African populations and overestimates diversity between
European and Asian populations, and iii) underestimates
diversity between Africans and Asians, underestimates
diversity between Africans and Europeans, and overesti-

mates diversity between Europeans and Asians. The plot
of raw genetic distances versus TLIM-generated genetic
distances reveals an analogous pattern of discrepancy
(Fig. 3C).
Comparison of the raw- versus EHM-based nucleotide

diversity coefficients in Figure 3B reveals the improved fit
of the EHM. We see a tight clustering of raw diversity
coefficients about the EHM-based estimates. It is difficult
to discern any particular pattern in the lack-of-fit. The
plot of raw genetic distances versus EHM-generated
genetic distances in Figure 3D reveals that the EHM pre-
dicts genetic distances extraordinarily well. The genetic
distances are tightly clustered (r2 5 0.94), although there
is more dispersion among raw and EHM-generated genetic
distances for larger distances than for smaller distances.
Figure 4 presents the TLIM and EHM fit to the STR

gene diversity matrix. Table 2 shows that these data
also reject both models; however, both tests for compar-
ing models confirm that the EHM fits significantly better
fit than does the TLIM. Figure 5 presents graphs of raw
and model-generated statistics for the subset of eight
populations that match the populations in the DNA
sequence analysis (as noted, the French serve as proxies
for the Iberians). The plot of raw- versus TLIM-based
gene diversity coefficients in Figure 5A reveals the same
nature of lack-of-fit for the TLIM that we observed in
the analysis of DNA sequences. That is, the TLIM i)
underestimates diversity within African populations and
overestimates diversity within European and Asia popu-
lations, ii) underestimates diversity between African
populations and overestimates diversity between Euro-
pean and Asian populations, and iii) underestimates
diversity between Africans and Asians, underestimates
diversity between Africans and Europeans, and overesti-
mates diversity between Europeans and Asians. The plot
of raw genetic distances versus TLIM-generated genetic

TABLE 3. Diversity components and fixation indices from two-level island model

Level 100*p Component % Total Index Value F/F(max)

DNA sequences
Within population 0.070 0.070 84.1 FSR 0.051 0.051
In same region 0.073 0.004 4.5 FRT 0.114 0.114
Total population 0.083 0.009 11.4 FST 0.159 0.159

Level H Component % Total Index Value F/F(max)

580 STRs
Within population 0.715 0.715 94.3 FSR 0.027 0.093
In same region 0.735 0.020 2.6 FRT 0.031 0.110
Total population 0.759 0.024 3.1 FST 0.057 0.201

Fig. 2. Diagrams of hierarchical models fit to the DNA
sequences. A and B are the TLIM and the EHM, respectively.
Both graphs are calibrated to the nucleotide diversity scale
below. Numerical values for the nodes and branch lengths
appear in Tables 3 and 4. The circled symbols indicate the di-
versity coefficient estimated for the internal nodes. For the
TLIM, the letter T denotes total population, and the letter R
denotes region, and all external branches terminate at the
within populations diversity. For the EHM each external branch
terminates at diversity within a particular population.

Fig. 3. Nucleotide diversity and genetic distance plots for the DNA sequences. A and B show ‘‘raw" nucleotide diversity coeffi-
cients (3100) plotted against the values predicted by the TLIM and EHM, respectively. C and D show ‘‘raw" genetic distance coeffi-
cients plotted against the values predicted by TLIM and EHM, respectively. For the TLIM, T denotes total population, R denotes
region, and W denotes within. The TLIM values for both models are jittered to avoid eclipsing. To simplify visually, we plot only the
diversity coefficients for internal nodes of the EHM. Tables 3 and 4 give all numerical values for these plots. The key at the bottom
gives the color-coding for all four panels. The circles denote model-generated expectations for nucleotide diversity coefficients.

Fig. 5. Gene diversity and genetic distance plots for the STRs. Gray circles present all points. To simplify visually, colored
squares show values for the populations for which we obtained DNA sequences. A and B show ‘‘raw" gene diversity coefficients plot-
ted against the values predicted by the TLIM and EHM, respectively. C and D show ‘‘raw" genetic distance coefficients plotted
against the values predicted by TLIM and EHM, respectively. The TLIM values for both models are jittered to avoid eclipsing. For
the TLIM, T denotes total population, R denotes region, and W denotes within. We plot only the diversity coefficients for internal
nodes of the EHM in order to reduce the size of the graphs. Tables 3 and 4 give the numerical values for these plots. The key at the
bottom gives the color-coding for all four panels. The circles denote model-generated expectations for gene diversity coefficients.
Supporting Information Table 3 gives all raw and estimated gene diversity and genetic distance coefficients for the 46 population
STR analyses.
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distances reveals an analogous pattern of discrepancy
(Fig. 5C).
The situation is more complicated for the EHM fit to

the 46 population STR data. For the nodes corresponding
to African populations, we see a close correspondence
and tight clustering of raw diversity coefficients about
the EHM-generated estimates. By contrast, the model
overestimates diversity for the nodes pertaining to non-
African populations. Nevertheless, Figure 5D shows that

the raw and EHM-generated genetic distance estimates
cluster tightly (r2 5 0.973). The good fit of the raw and
EHM-generated genetic distances is enigmatic because
of the biased EHM-generated gene diversity estimates in
non-Africans. Supporting Information Table 3 provides
the complete model-generated gene diversity and genetic
distance matrices for both the TLIM and EHM.
Although the measures nucleotide diversity and gene

diversity are on vastly different numerical scales, Fig-

Fig. 4. Diagrams of hierarchical models fit to the STRs. A and B are the TLIM and the EHM, respectively. Both graphs are cali-
brated to the gene diversity scale below. Numerical values for selected nodes and branch lengths appear in Tables 3 and 4. The
circled symbols indicate the diversity coefficient estimated for the internal nodes. For the TLIM, the letter T denotes total popula-
tion, and the letter R denotes region, and all external branches terminate at the within populations diversity. For the EHM, we
have labeled the nodes that link the eight populations from the DNA sequence analysis and each external branch terminates at
diversity within a particular population. Supporting Information Table 3 has the complete results for all 46 populations.
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ures 2A and 4A show that the two data sets provide
qualitatively similar TLIM trees. The numerical values
for the fixation indices FSR, FRT, and FST as obtained
from the TLIM differ between the DNA sequence and
STR data (Table 3). The DNA sequences provide higher
fixation indices than do the STRs. However, based on
Hedrick’s and Long’s derivations (Hedrick, 1999; Long
and Kittles, 2003), we should expect this difference
because diversity is low at the per nucleotide level,
whereas it is high at the per STR locus level. Standard-
izing these fixation indices relative to their theoretical
maxima reveals the qualitative similarity between the
DNA sequence and STR results. FST/F(max) 5 0.159 for
the DNA sequences and FST/F(max) 5 0.201 for the STRs.
It is of interest that FST estimated from our DNA
sequences (0.159) is nearly the same as the value (0.158)
recently published for another DNA sequence dataset
(Wall et al., 2008), and the fixation indices estimated
from the STRs are close to previously published esti-
mates for these data (Rosenberg et al., 2002).
Figures 2B and 4B show the qualitative similarity

between the EHM trees for the two data sets. The stand-
ardized population-specific fixation indices (Table 4)
illustrate this proportionality. For both data sets, the
African populations show modest divergence from the

basal node (FST(k)/max(FST) (0.10), the European popula-
tions and Gujarati show substantial divergence from the
basal node (FST(k)/max(FST) (0.30), and the East Asian
populations show great divergence from the basal node
(FST(k)/max(FST) (0.40).

DISCUSSION

Despite the small sample size, this is the first study to
collect complete DNA sequences from autosomal loci in a
manner that makes it possible to evaluate diversity at
more than one level of population hierarchy. In addition,
we use a large publicly available data set that includes
STR genotypes from 580 loci from many individuals
from 46 populations to confirm and evaluate patterns of
diversity in our DNA sequence data.
We began by fitting a simple TLIM that embodies a

partition of diversity into components attributable to
within populations, between populations within regions,
and between different regions (Figs. 2A and 4A). Using
this model, we find a higher percentage of diversity
between regions for DNA sequences than for STR poly-
morphisms. This difference is likely due to the scale
effect that results from the fact that polymorphism is
low in DNA sequences but high in STRs (Hedrick, 1999;

TABLE 4. Results from expanded hierarchical modela

Node Ancestorb 100*p Lengthc % Totald FST(k) FST(k)/F(max)

DNA sequences
Biaka 1 0.086 0.007 92.2 0.078 0.086
Yoruba 2 0.086 0.003 92.3 0.077 0.085
Luhya 3 0.087 0.000 93.9 0.061 0.067
Iberian 5 0.066 0.000 71.2 0.288 0.308
Moscow 5 0.062 0.001 66.8 0.332 0.354
Gujarati 6 0.068 0.000 72.7 0.273 0.292
Han 7 0.054 0.003 57.5 0.425 0.449
Japanese 7 0.057 0.000 61.4 0.386 0.410
1 0.093 – 100.0 – –
2 1 0.089 0.004 95.4 – –
3 2 0.085 0.004 91.6 – –
4 3 0.069 0.016 74.2 – –
5 4 0.064 0.006 68.3 – –
6 4 0.067 0.003 71.5 – –
7 6 0.057 0.010 61.1 – –

Nodee Ancestorb h Lengthf % Totald FST(k) FST(k) /F(max)

STRs
Biaka 49 0.751 0.023 97.0 0.030 0.121
Kenya 51 0.756 0.008 97.6 0.024 0.097
Yoruba 51 0.756 0.008 97.7 0.023 0.096
French 56 0.702 0.008 90.7 0.093 0.312
Moscow 56 0.703 0.007 90.8 0.092 0.309
Gujarati 69 0.706 0.005 91.2 0.088 0.298
Han 83 0.673 0.003 87.0 0.130 0.399
Japanese 83 0.669 0.006 86.5 0.135 0.409
49 – 0.774 – 100.0 – –
50 49 0.769 0.005 99.3 – –
51 50 0.764 0.005 98.7 – –
55 50 0.715 0.054 92.3 – –
56 55 0.710 0.004 91.7 – –
69 55 0.711 0.004 91.8 – –
83 69 0.676 0.035 87.3 – –

a Nodes are numbered as in Figures 2 and 4.
b Ancestor of node in first column.
c Length of branch from ancestor to node in first column.
d Diversity at node as a percent of estimated total diversity.
e Nodes selected from the analysis of 46 populations for comparison to the DNA sequence results.
f Total length summed over all branches between the given nodes.
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Long and Kittles, 2003). The similarity between the nor-
malized fixation indices from DNA sequences and STRs
confirms this interpretation (Tables 3 and 4). A more im-
portant finding is that the TLIM produces biases that
are consistent between the DNA sequences and STRs
(Figs. 3 and 5).
We next turned to models with multiple levels of nest-

ing and variable branch lengths (Figs. 2B and 4B). We
found that the DNA sequences and STRs converge on
similar topological relationships and similar patterns of
diversity within and between populations. For both the
DNA sequences and STRs, the treeness statistics show
that the EHM fits the data substantially better than
does the TLIM (Table 2). A summary of the major differ-
ences between the TLIM and the EHM follows. First,
the TLIM estimates less diversity for the species as a
whole than does the EHM. Second, the TLIM estimates
an excess diversity within non-Sub-Saharan African pop-
ulations, but it estimates a deficit of diversity within
Sub-Saharan African populations. Third, the TLIM
forces all continental populations to diverge equally from
the deepest node, whereas the expanded hierarchy splits
the Biaka from all other populations at the deepest
node. Fourth, in the TLIM, the European and Asian pop-
ulations diverge from African populations independently,
but in the EHM, the European and East Asian popula-
tion diverge together from African populations.
We see that both data types (DNA sequences and

STRs) reject both population structure models (TLIM
and EHM). Nevertheless, the EHM does a significantly
better job at representing the data. Two statistical meth-
ods confirm the superiority of the EHM (Table 2), but
our comparisons of observed and model-based diversity
and genetic distance values demonstrate the ways in
which the EHM out-performs the TLIM (Figs. 3 and 5).
It is of note that both the DNA sequences and STRs
show the same pattern of improvements with the EHM
over the TLIM. An aphorism from the statistician
George Box (Box and Draper, 1987) puts our results into
perspective—Essentially, all models are wrong, but some
are useful.
It is interesting to see how our findings compare with

those from other recent studies of human variability in
DNA. A recent study of 640,000 SNPs genotyped in a
largely overlapping data set reproduces our key finding
that the deepest node of the hierarchy splits the Biaka
from all other populations (Li et al., 2008). In fact, the
SNP data produces a tree with the same major topologi-
cal relationships that we find using the 46-population
STR data set. As we presented earlier, there is consider-
able overlap between the loci that we have sequenced
and those that Yu and colleagues have sequenced (Yu
et al., 2002). The deep population structure that we find
in Sub-Saharan Africa explains their seemingly impossi-
ble finding that nucleotide diversity is greater between
two African DNA sequences than between an African
DNA sequence and a non-African DNA sequence. The
reason for their result is that, in their sample, the per-
centage of DNA sequence comparisons that spanned the
deepest African nodes was higher for African x African
DNA sequence comparisons than for African x non-Afri-
can sequence comparisons. We should not expect to see
Yu and colleagues’ exact findings reproduced in other
studies because the apparent diversity within African
samples will be a complicated function of which groups
contribute to the sample, and how many individuals rep-
resent each group. We should also like to point out that

our DNA sequencing findings closely parallel three find-
ings from a recent study of the SNP allele frequency
spectrum (Keinan et al., 2007). First, East Asian and
Northern European ancestors shared the same popula-
tion bottleneck in their migration Out of Africa. Second,
both East Asians and Northern Europeans have drifted
independently after the Out of Africa migration bottle-
neck. Third, East Asians have drifted more since the bot-
tleneck than Europeans. It is easy to read all three of
these findings from branch sequence and branch lengths
in the graphs of our EHM applied to both data sets.
We also wish to point out that despite the fact that

there are large differences in the level of diversity within
populations; every population sampled harbors ample di-
versity such that every copy of the genome is unique,
and every individual is unique (excepting identical
twins). Every person is likely to be heterozygous at
millions of nucleotide positions when the whole genome
is considered. With this level of variability, population
membership is unlikely to be a precise indicator of
an individual’s genotype at any particular nucleotide
position.
We now turn to how these estimates and analyses of

genetic diversity within and between populations effect
the assessment of human races in our species. Lewon-
tin’s argument against race is historically important and
interesting (Lewontin, 1972). He was not the first to
argue against race taxonomy using genetics, but his
argument was unique. He confronted race by trying to
show that classical racial groupings account for too little
of the total diversity to be worth further concern. Our
results show that race, as represented in the TLIM, fits
both data sets poorly. Comparisons between raw and
model-generated diversity and genetic distance estimates
reveal that the TLIM indeed misrepresents both the pat-
tern and amount of diversity within and between popu-
lations. A strong message from our findings is that the
model used in an analysis biases the outcome measure-
ments. We agree entirely with Lewontin that classical
race taxonomy is a poor reflection of human diversity.
However, we do not believe that the diversity compo-
nents that he estimated using this model reflect an
intrinsic property of human genetic structure as some
scientists have suggested (Templeton, 1999, 2007; Brown
and Armelagos, 2001).
The pattern of DNA sequence diversity also creates

some unsettling problems for applying to humans the
definition of races as groups of populations within which
the individuals are more related to each other than they
are to members of other such groups (Hartl and Clark,
1997). This definition essentially encompasses Temple-
ton’s evolutionary lineage definition of race (Templeton,
1999) and Dobzhansky’s gene frequency definition of
race (Dobzhansky, 1970). Although it is logically consist-
ent to group populations by relationship, the nested pat-
tern of genetic diversity in the EHM disagrees with the
traditional anthropological classifications that placed
continental populations at the same level of classification
(i.e., race). A classification that takes into account evolu-
tionary relationships and the nested pattern of diversity
would require that Sub-Saharan Africans are not a race
because the most exclusive group that includes all Sub-
Saharan African populations also includes every non-
Sub-Saharan African population (Figs. 2B and 4B).
Moreover, the Out-of-Africa branch would place all
Eurasians in the same race, but this would necessitate
placing Europeans and Asians in sub-races. Several
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sub-sub-races would be necessary to account for the pop-
ulation groups throughout the world. We see no need for
such a classification in light of the fact that our evolu-
tionary history gives good guidance for understanding
the structure of human diversity.
Some biologists define races based purely on correct

assignment of individuals to groups. The best known
version of this approach is the seventy-five percent cor-
rect classification rule (Amadon, 1949; Mayr, 1969).
Edwards has explained how accurate classification will
be achieved when multiple polymorphic loci are consid-
ered (Edwards, 2003), and we see empirically that there
are applications to human data that satisfy the seventy-
five percent criterion (Rosenberg et al., 2002; Bamshad
et al., 2003). However, the clustering methods in popular
use produce human population groups that have a sim-
pler structure than even the TLIM (Pritchard et al.,
2000; Falush et al., 2003). This structure is clearly a
weak description of the true human population struc-
ture, because it does not capture the complete nested
arrangement of populations. We do not expect that such
a classification will serve any application better than the
full nested structure of populations.
In summary, we find for our own data and for a large

published data set, that human populations have much
diversity when DNA sequences are considered. We show
that simple partitions of diversity are biased and that
they hide the true extent of diversity. The pattern of di-
versity that we reveal is richer and worthy of study as it
sheds light on the peopling of the world, ancestry and
natural selection, and disease patterns (Ramachandran
et al., 2005; Rosenberg et al., 2005; Lohmueller et al.,
2008).
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