Skip to main content

Illinois IGB

Bacteria

Deciphering the impacts of small RNA interactions in individual bacterial cells

March 10, 2021

Bacteria employ many different strategies to regulate gene expression in response to fluctuating, often stressful, conditions in their environments. One type of regulation involves non-coding RNA molecules called small RNAs (sRNAs), which are found in all domains of life. A new study by researchers describes, for the first time, the impacts of sRNA interactions in individual bacterial cells. Their findings are reported in the journal Nature Communications, with the paper selected as an Editors’ highlight article.


March 10, 2021


Related Articles

Gut bacteria help digest dietary fiber, release important antioxidant

January 19, 2021

Dietary fiber found in grains is a large component of many diets, but little is understood about how we digest the fiber, as humans lack enzymes to break down the complex molecules. Some species of gut bacteria break down the fiber in such a way that it not only becomes digestible, but releases ferulic acid, an important antioxidant with multiple health benefits, according to a new study led by researchers at the University of Illinois Urbana-Champaign.


January 19, 2021


Related Articles

Study on how bacteria obtain essential nutrients in soil, during infection

October 19, 2020

Much like humans eat food in order to obtain essential nutrients, bacteria acquire nutrients by importing them. An essential nutrient for life is zinc, which cannot be manufactured, and therefore must be obtained from the environment. However, the availability of zinc is frequently limited. This is exemplified by a defense mechanism, nutritional immunity, used by the immune system to prevent infections in which the body withholds metals, such as zinc, to combat invading bacteria.


October 19, 2020


Related Articles

Dozens of potential new antibiotics discovered with free online app

November 19, 2019

A new web tool speeds the discovery of drugs to kill Gram-negative bacteria, which are responsible for the vast majority of antibiotic-resistant infections and deaths. The tool also offers insights into discrete chemical changes that can convert drugs that kill other bacteria into drugs to fight Gram-negative infections. The team proved the system works by modifying a Gram-positive drug and testing it against three different Gram-negative bacterial culprits in mouse sepsis. The drug was successful against each.


November 19, 2019


Related Articles

Researchers discover a starring role for chaperone protein Hfq in gene regulation

June 20, 2018

A cell’s efforts to respond and adapt to its external environment rely on an elaborate yet coordinated set of molecular partnerships within. The more we learn about this complicated internal dance, the more we appreciate the flexibility of its roles. In a recent University of Illinois study, graduate student Muhammad Azam and Professor of Microbiology Cari Vanderpool have demonstrated that a protein typically assumed to support the functions of other molecules is actually able to assume a primary role itself.


June 20, 2018


Related Articles

Virus-bacteria coevolution solves diversity paradox by 'Killing the Winner'

January 2, 2018

There is remarkable biodiversity in all but the most extreme ecosystems on Earth. When many species are competing for the same finite resource, a theory called competitive exclusion suggests one species will outperform the others and drive them to extinction, limiting biodiversity. But this isn’t what we observe in nature. Theoretical models of population dynamics have not presented a fully satisfactory explanation for what has come to be known as the diversity paradox.


January 2, 2018


Related Articles

Study reveals how bacteria steal nutrients from human hosts

November 2, 2017

A new study, published in mBio, exposes a zinc-import system in bacteria that could contribute to their ability to cause infection.

The study looked at how the bacterium Staphylococcus aureus, which can infect virtually all of the tissues in the human body, competes with the immune system for the essential nutrient zinc.


November 2, 2017


Related Articles

Subscribe to Bacteria