

Comparative Genomics

Recombineering: Development of BAC-based Experimental Analysis

M. J. Mazur, A. Hauck, L. B. Schook, & M. B. Rogatcheva

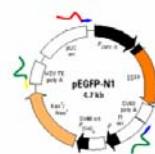
Department of Animal Sciences, University of Illinois, Urbana

<http://www.swinegenomics.com>

Abstract

Bacterial artificial chromosomes (BACs) provide valuable resources for the analysis and manipulation of large genomic fragments. Using recombineering to make directed genetic modifications of genomic DNA cloned into BACs, we are developing approaches to assist in the resolution of complex human diseases with the pig biomedical model. To overcome difficulties associated with the introduction of BACs with large inserts into mammalian cells, we carried out experiments to determine the effects of various parameters regarding the efficiency of DNA transfection into porcine fibroblast cells. The BAC clone 40309 from the RPCI-44 library was recombineered by introduction of a cassette encoding enhanced green fluorescent protein (EGFP) and used to monitor the effectiveness of BAC DNA uptake into the fibroblast cells. Since the rate of successful BAC transfection depends on factors including the purity of BAC DNA, the transfecting agent, and the target cell line, we compared the effects of varying these parameters on transfection efficiency. The efficiencies were determined by flow cytometry analysis of transient EGFP expression in the transfected cells. We determined that the time course of EGFP expression varied depending on method of transfection (non-liposomal lipid reagent with DNA-condensing enhancer, lipid-based transfection reagent, or electroporation), observed the transfected cells expressed EGFP for up to two weeks, and optimized the conditions for transfection. Co-transfected an EGFP BAC with another BAC of interest may provide a rapid method of selecting successful transfecteds.

Introduction

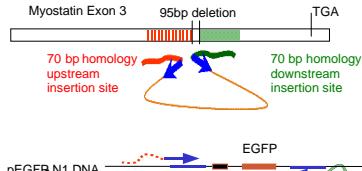

- Recombineering provides a rapid method to genetically modify genomic DNA inserts cloned into BACs. In our laboratory we have targeted genes that will be useful to create biomedical research models. Using the recombinogenic *E. coli* strain DY380, we have generated multiple genetic modifications in BAC clones.
- Another component in developing a recombineering platform is the ability to use the recombineered BACs to introduce targeted changes in fibroblast and other somatic cells. Introduction of a mutation into a mammalian cell by homologous recombination requires that the region of homology of the construct and targeting sequence be as large as possible, however, the large size of the BAC insert makes it difficult to efficiently transfect the cells.
- Here we have utilized the porcine BAC 40309 that contains the myostatin gene to develop a system to monitor the transfection efficiency by transient expression of the EGFP from the recombined BAC.
- Lipid based delivery systems have proven extremely effective for achieving high rates of plasmid transfection in mammalian cells. Here we compared the efficiency of two different delivery systems, Effectene and Lipofectamine 2000.

Objectives

- Develop a system to test transfection efficiency of BAC into porcine fetal fibroblast cells.
- Determine the optimal method for transfection and time of EGFP expression after transfection.
- Improve the method by varying the parameters to increase the efficiency of BAC transfection such as quantity of DNA, amount of transfecting agent used, cell line, and finally purity of DNA.

Materials and Methods

□ Construction of targeting vector for EGFP insertion:


Construct was amplified from pEGFP-N1 vector DNA using 90bp primers. Each of them had 70bp homology with the region of the myostatin gene upstream and downstream of the insertion site.

DpnI cleaves methylated GATC DNA and digests pEGFP-N1 DNA, preventing contamination with EGFP-expression vector.

□ Extraction of BAC DNA

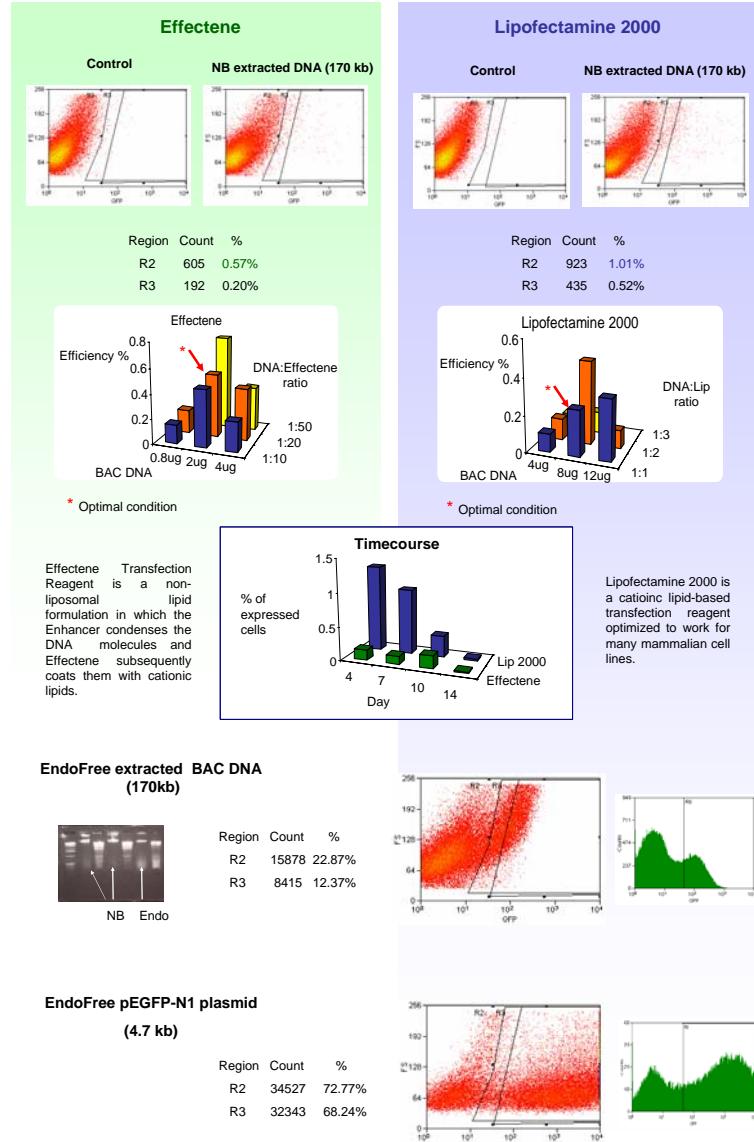
NucleoBond BAC Maxi Kit (BD Biosciences) (NB)
Reliable, high yield
60ug/100 mls

EndoFree Plasmid Maxi Kit (EndoFree)
High efficiency for transfection of mammalian cells
High purity DNA, close to CsCl extracted DNA
100ug/100 mls

□ Cell Transfection

UIUC Y12F cell line was transfected with either BAC DNA or plasmid DNA

□ Expression Analysis


EGFP gene expression monitored on days 4, 7, 10, and 14 by flow analysis of 50,000-100,000 transfected porcine fetal fibroblast cells

Transfection Conditions

Transfection Method	Culture Dish	Confluence	Media Type	DNA (ug)	Reagent (ul)	Incubation (hours)	37°
Lipofectamine 2000	60 cm ²	60%	UIUC Y12F	8 ug	8 ul Lipofectamine	5 hours	
Effectene Transfection Reagent	60 cm ²	60%	UIUC Y12F	2 ug	16 ul Enhancer 40ul Effectene	24 hours	

Results

Conclusions

- We developed a useful system to check for transfection efficiency through the expression of EGFP by fetal fibroblasts as measured by flow cytometry.
- This study showed the optimal method for transfection of our BAC DNA into UIUC Y12 fetal fibroblast cells was achieved using the EndoFree kit for DNA extraction and Lipofectamine 2000 for transfection. The efficiency of transient expression of recombined myostatin BAC (170 kb) was approximately 22.87% using these parameters. However, the results were inconsistent for different experiments.
- The transfection efficiency of vectors with large genomic inserts greatly depends on the insert's size. To overcome the low efficiency and inconsistency with transfection of 150-200 kb inserts we are currently constricting the series of vectors with smaller inserts of 15-25 kb. The same recombination system is used to subclone fragments from original BAC into pBR322 by gap repair.

Acknowledgements

This work was supported by USDA grant AG2002-35205-12712. We would like to recognize the UIUC Biotechnology Center for the use of the Flow Cytometry Facility. In addition, we would like to thank the MGET training program for providing financial support for research and travel.