AUREA.learner.tst
index
/home/earls3/Price/AUREA/build/lib.linux-x86_64-2.6/AUREA/learner/tst.py

# This file was automatically generated by SWIG (http://www.swig.org).
# Version 1.3.36
#
# Don't modify this file, modify the SWIG interface instead.

 
Modules
       
AUREA.learner._tst
new

 
Classes
       
TST
__builtin__.object
DoubleVector
IntVector
tst_PySwigIterator

 
class DoubleVector(__builtin__.object)
     Methods defined here:
__del__ lambda self
__delitem__(*args)
__delslice__(*args)
__getitem__(*args)
__getslice__(*args)
__init__(self, *args)
__iter__(self)
__len__(*args)
__nonzero__(*args)
__repr__ = _swig_repr(self)
__setitem__(*args)
__setslice__(*args)
append(*args)
assign(*args)
back(*args)
begin(*args)
capacity(*args)
clear(*args)
empty(*args)
end(*args)
erase(*args)
front(*args)
get_allocator(*args)
insert(*args)
iterator(*args)
pop(*args)
pop_back(*args)
push_back(*args)
rbegin(*args)
rend(*args)
reserve(*args)
resize(*args)
size(*args)
swap(*args)

Data descriptors defined here:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)
thisown
The membership flag

Data and other attributes defined here:
__swig_destroy__ = <built-in function delete_DoubleVector>

 
class IntVector(__builtin__.object)
     Methods defined here:
__del__ lambda self
__delitem__(*args)
__delslice__(*args)
__getitem__(*args)
__getslice__(*args)
__init__(self, *args)
__iter__(self)
__len__(*args)
__nonzero__(*args)
__repr__ = _swig_repr(self)
__setitem__(*args)
__setslice__(*args)
append(*args)
assign(*args)
back(*args)
begin(*args)
capacity(*args)
clear(*args)
empty(*args)
end(*args)
erase(*args)
front(*args)
get_allocator(*args)
insert(*args)
iterator(*args)
pop(*args)
pop_back(*args)
push_back(*args)
rbegin(*args)
rend(*args)
reserve(*args)
resize(*args)
size(*args)
swap(*args)

Data descriptors defined here:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)
thisown
The membership flag

Data and other attributes defined here:
__swig_destroy__ = <built-in function delete_IntVector>

 
class TST
    Top Scoring Triplets class.
 
This class runs the top scoring triplets algorithm described in The ordering
of expression among a few genes can provide simple cancer biomarkers
and signal BRCA I mutations by Lin et al in BMC Bioinformatics 2009, 10:256
http://www.biomedcentral.com/1471-2105/10/256
 
This code uses slightly modified code from 
https://jshare.johnshopkins.edu/dnaiman1/public_html/rxa/ which is 
the code described in the above mentioned paper.
 
  Methods defined here:
__init__(self, data, numGenes, classSizes, filter)
Initializes the object
data is an IntVector containing the microarray data and should be
generated by the dataPackager class. classSizes is an intvector 
containing the size of the 2 classes, class 1 and class 2 respectively.
addUnclassified(self, unclassifiedVector)
Stores unclassified vector as self.unclassified_data_vector
classify(self)
Returns a list of classifications based on the maxscores.
0 means the first class, 1 means the second class.
compute_ptable(self)
Stores the counts for the various orderings(in the case of multiple orderings) in their respective class
generates self.ptable which is ordered:
[
    ordering1[
                class1 [p(1,2,3), p(1,3,2), p(2,1,3), p(2,3,1), p(3,1,2), p(3,2,1)],
                class2 [p(1,2,3), p(1,3,2), p(2,1,3), p(2,3,1), p(3,1,2), p(3,2,1)]
    ]
    ordering2 [
        ....
    ],
    ...
]
convertToDataIndex(self, sample_index, gene_index)
This translates the sample_index and gene index into a self.data index
crossValidate(self, k=10)
Performs k-fold cross validation (k is an integer [2,samplesize])
Returns the Matthews correlation coefficient.(-1.0, 1.0)
distance(self, v1, v2)
Returns the square of the euclidian distance between v1 and v2
getMaxScores(self)
Returns a list of the top scoring triplets indices
ptable_entry(self, s1, s2, s3)
Builds a list that contains the index of matching orderings.
If there is an equality then the list could be longer than 1.
train(self)
Runs the c code tst algorithm.
fills the self.maxScore1,2,3 with the triplets.
May have multiple so self.maxScore1[0] is the first element of the 
first triplet, self.maxScore1[1] is the first element of the second
triplet, etc.

 
class tst_PySwigIterator(__builtin__.object)
     Methods defined here:
__add__(*args)
__del__ lambda self
__eq__(*args)
__iadd__(*args)
__init__(self, *args, **kwargs)
__isub__(*args)
__iter__(self)
__ne__(*args)
__repr__ = _swig_repr(self)
__sub__(*args)
advance(*args)
copy(*args)
decr(*args)
distance(*args)
equal(*args)
incr(*args)
next(*args)
previous(*args)
value(*args)

Data descriptors defined here:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)
thisown
The membership flag

Data and other attributes defined here:
__swig_destroy__ = <built-in function delete_tst_PySwigIterator>

 
Functions
       
DoubleVector_swigregister(...)
IntVector_swigregister(...)
crossValidate(...)
runTST(...)
tst_PySwigIterator_swigregister(...)