Skip to main content

Core Facilities

Core Facilities Icon

Resources

The Core Facilities at the IGB is a state-of-the-art resource for biological microscopy and image analysis. The core mission of the facility is to provide IGB faculty, as well as faculty from across campus with the tools and expertise to meet their imaging goals. In addition to providing technical assistance in acquiring and analyzing microscopy images the staff is also able to aid in designing and interpreting experiments.

What Core Facilities can offer

Health & Wellness

High-end equipment

From Confocals and MINFLUX to CT Scanners and AFM.

List of Instruments

Technology & Socety

User training

Schedule training with us to access Core instruments.

Training Request Form

Agriculture & Energy

Ongoing support

Experiment design, data interpretation, image analysis, and more.

List of Services

Outreach & Public Engagement

Twenty-four hour access

The Core is available 24 hours a day to support your research endeavors.

IGB CONNECT ACCESS Request

Education and Training

The Core Facilities trains hundreds of new users each year on one or more instruments, and are as essential portion of the IGB’s Pollen Power summer camp program, bringing middle-school age children from local communities to engage with the Core.

Our new user procedures guide users through the training process. To request training (theory training is required for most microscopes including LSM 700, LSM 710, Apotome, SR-SIM, before the hands-on training), please fill out our training request form. Users have access to IGB disk space through the IGB computer and network resources group to transfer data. To request access to the IGB building, please fill out the IGB Connect Access Request.

Training pages can be found here.

Publications with data from the Core

2025

Ai, Q., Bonagiri, L. K. S., Panse, K. S., Kim, J., Zhou, S., & Zhang, Y. (2025). Nucleation at solid–liquid interfaces is accompanied by the reconfiguration of electrical double layers. Proceedings of the National Academy of Sciences, 122(30), e2421635122. https://doi.org/doi:10.1073/pnas.2421635122 

Arogundade, O. H., Kuo, C.-W., Cui, Y., Sarkar, S., Feng, Y., Kolossov, V. L., James, S., Lee, W., & Smith, A. M. (2025). Dynamic Polymer Cross-linking Limits the Homogeneity of Compact Quantum Dots for Single-Particle Tracking. ACS Applied Materials & Interfaces, 17(36), 50476-50489. https://doi.org/10.1021/acsami.5c12678 

Arshee, M. R., Shukla, R., Li, J., Doha, U., Bagchi, I. C., Ziv-Gal, A., & Wagoner Johnson, A. J. (2025). Impact of paraben on uterine collagen: An integrated and targeted Correlative approach using second harmonic generation microscopy, nanoindentation, and atomic force microscopy. Journal of the Mechanical Behavior of Biomedical Materials, 165, 106926. https://doi.org/https://doi.org/10.1016/j.jmbbm.2025.106926 

Bangru, S., Chen, J., Baker, N., Das, D., Chembazhi, U. V., Derham, J. M., Chorghade, S., Arif, W., Alencastro, F., Duncan, A. W., Carstens, R. P., & Kalsotra, A. (2025). ESRP2-microRNA-122 axis promotes the postnatal onset of liver polyploidization and maturation. Genes Dev, 39(5-6), 325-347. https://doi.org/10.1101/gad.352129.124 

Baskaran, D., Liu, Y., Zhou, J., Wang, Y., Nguyen, D., & Wang, H. (2025). In vitro and in vivo metabolic tagging and modulation of platelets. Materials Today Bio, 32, 101719. https://doi.org/https://doi.org/10.1016/j.mtbio.2025.101719 

Behrens, C., Tucker, M. E., Julkowski, K., & Bell, A. M. (2025). Discrete genetic modules underlie divergent reproductive strategies in three-spined stickleback. bioRxiv. https://doi.org/10.1101/2025.04.17.649467 

Boob, A. G., Tan, S.-I., Zaidi, A., Singh, N., Xue, X., Zhou, S., Martin, T. A., Chen, L.-Q., & Zhao, H. (2025). Design of diverse, functional mitochondrial targeting sequences across eukaryotic organisms using variational autoencoder. Nature Communications, 16(1), 4151. https://doi.org/10.1038/s41467-025-59499-3 

Brinks, A. S., Carrica, L. K., Tagler, D. J., Gulley, J. M., & Juraska, J. M. (2025). Timing of Methamphetamine Exposure during Adolescence Differentially Influences Parvalbumin and Perineuronal Net Immunoreactivity in the Medial Prefrontal Cortex of Female, but Not Male, Rats. Dev Neurosci, 47(1), 27-39. https://doi.org/10.1159/000538608 

Chung, J. Y., Ahn, Y., Lee, J. H., Yang, S., Lee, S. C., Kong, H., & Chung, H. J. Microbubble-Controlled Delivery of Biofilm-Targeting Nanoparticles to Treat MRSA Infection. Advanced Functional Materials, n/a(n/a), 2508291. https://doi.org/https://doi.org/10.1002/adfm.202508291 

Drennan, W. C., Aydin, O., Emon, B., Li, Z., Joy, M. S. H., Barishman, A., Kim, Y., Wei, M., Denham, D., Carrillo, A., & Saif, M. T. A. (2025). A forward-engineered, muscle-driven soft robotic swimmer. Science Advances, 11(29), eadu8634. https://doi.org/doi:10.1126/sciadv.adu8634 

Dwivedy, A., Baskaran, D., Sharma, G., Hong, W., Gandavadi, D., Krissanaprasit, A., Han, J., Liu, Y., Zimmers, Z., Mafokwane, T., Hayah, I., Chauhan, N., Zheng, M., Yao, S., Fraser, K., Decker, J. S., Jin, X., Wang, H., Friedman, A. D., & Wang, X. (2025). Engineering Novel DNA Nanoarchitectures for Targeted Drug Delivery and Aptamer Mediated Apoptosis in Cancer Therapeutics. Advanced Functional Materials, 35(22), 2425394. https://doi.org/https://doi.org/10.1002/adfm.202425394 

Huang, E. L., & Ozturk, O. K. (2025). Zein-based oleogels: Oil type impact on functionality in plant-based fat alternatives in 3D printing. International Journal of Biological Macromolecules, 329, 147840. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2025.147840 

Kang, S., Kim, E. M., Burgeson, E., Han, B., Rogers, S., & Kong, H. (2026). Interrogating functional connectivity of in vitro neural glia tissue model modulated through integrative control of matrix stiffness and a neurotrophic factor. Biomaterials, 326, 123699. https://doi.org/https://doi.org/10.1016/j.biomaterials.2025.123699 

Kimmel, H. R. C., Paxhia, A. L., Adamji, Z., & Underhill, G. H. (2025). Enhanced combinatorial analysis of tumor cell-ECM interactions using design-of-experiment optimized microarrays. Biofabrication, 17(4). https://doi.org/10.1088/1758-5090/adf3e6 

Lai, N. Z. E., Bashir, S. T., Ziv-Gal, A., Sivagaru, M., & Nowak, R. A. (2025). Propylparaben negatively impacts IN VITRO preimplantation mouse embryo development. Reproductive Toxicology, 133, 108876. https://doi.org/https://doi.org/10.1016/j.reprotox.2025.108876 

Lee, H. Y., Lee, M. R., Fan, T. M., & Hergenrother, P. J. (2025). PAC-1 Synergizes with Sunitinib to Enhance Cell Death in Pancreatic Neuroendocrine Tumors. ACS Pharmacology & Translational Science, 8(4), 1140-1151. https://doi.org/10.1021/acsptsci.5c00052 

Li, K., Chembazhi, U. V., Krueger, S. B., Dewald, Z., Chen, J., Bai, Y., Kim, D., Lanzendorf, A. N., Kocheril, P. A., Chen, J., Kalsotra, A., & Zimmerman, S. C. (2025). Drug delivery agent that acts as a drug for synergistic activity. iScience, 28(8), 112890. https://doi.org/10.1016/j.isci.2025.112890 

Mahadevan, T., Figard, L. R., Seede, H., Sehgal, P., Geng, Y., McDonald, K., Golding, I., & Sokac, A. M. (2025). Cytoplasmic localization of the mRNA encoding actin regulator, Serendipity-α, promotes adherens junction assembly and nuclear repositioning. bioRxiv. https://doi.org/10.1101/2025.07.29.667534 

Mulligan, M. P., Boudreau, M. W., Bouwens, B. A., Lee, Y., Carrell, H. W., Zhu, J., Mousses, S., Shapiro, D. J., Nelson, E. R., Fan, T. M., & Hergenrother, P. J. (2025). Single Dose of a Small Molecule Leads to Complete Regressions of Large Breast Tumors in Mice. ACS Central Science, 11(2), 228-238. https://doi.org/10.1021/acscentsci.4c01628 

Nath, J., Banerjee, G., De, J., Dsouza, N., Sur, S., Scott, J. W., & Banerjee, P. (2025). Nanoplastics-mediated physiologic and genomic responses in pathogenic Escherichia coli O157:H7. Journal of Nanobiotechnology, 23(1), 304. https://doi.org/10.1186/s12951-025-03369-z 

Otero, A. M., Connolly, M. G., Gonzalez-Ricon, R. J., Wang, S. S., Allen, J. M., & Antonson, A. M. (2025). Influenza A virus during pregnancy disrupts maternal intestinal immunity and fetal cortical development in a dose- and time-dependent manner. Molecular Psychiatry, 30(1), 13-28. https://doi.org/10.1038/s41380-024-02648-9 

Park, C. J., Oh, J. E., Lin, P., Zhou, S., Bunnell, M., Bikorimana, E., Spinella, M. J., Lim, H. J., & Ko, C. J. (2025). A Dynamic Shift in Estrogen Receptor Expression During Granulosa Cell Differentiation in the Ovary. Endocrinology, 166(2). https://doi.org/10.1210/endocr/bqaf006 

Parra-Forero, L. Y., Richardson, K. A., Rubessa, M., & Nowak, R. A. (2025). Exposure to phthalate mixtures impairs mouse preimplantation embryonic development in an in vitro model. Biol Reprod. https://doi.org/10.1093/biolre/ioaf199 

Pinos, I., Blanco, A., Kelschenbach, J., Veenstra, M., Hu, E., He, H., Berman, J. W., Volsky, D. J., & Amengual, J. (2025). EcoHIV Infection Promotes Atherosclerosis Progression in LDLR-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 45(10), e470-e482. https://doi.org/doi:10.1161/ATVBAHA.125.323004 

Punyasena, S. W. (2025). The evolutionary history evident in grass pollen morphology. New Phytologist, 246(1), 8-11. https://doi.org/https://doi.org/10.1111/nph.20387 

Sarkar, M., Hossain, M. T., Ewoldt, R. H., Laukaitis, C., & Johnson, A. W. (2025). Stiffening of a fibrous matrix after recovery of contracted inclusions [10.1039/D5SM00087D]. Soft Matter, 21(17), 3314-3330. https://doi.org/10.1039/D5SM00087D 

Sarkar, M., Hossain, M. T., Ewoldt, R. H., Laukaitis, C., & Johnson, A. W. (2025). Stiffening of a fibrous matrix after recovery of contracted inclusions [10.1039/D5SM00087D]. Soft Matter, 21(17), 3314-3330. https://doi.org/10.1039/D5SM00087D 

Seung, B.-J., Khatiwada, S., Rock, D. L., & Delhon, G. (2025). Temporal and spatial characterization of keratinocytes supporting orf virus replication [Original Research]. Frontiers in Cellular and Infection Microbiology, Volume 14 - 2024. https://doi.org/10.3389/fcimb.2024.1486778 

Soto-Heras, S., Volz, L. J., Bovin, N., & Miller, D. J. (2025). Porcine sperm bind to an oviduct glycan coupled to glass surfaces as a model of sperm interaction with the oviduct. Scientific Reports, 15(1), 4680. https://doi.org/10.1038/s41598-025-88986-2 

Sutkus, L. T., Li, Z., Sommer, K. M., & Dilger, R. N. (2025). Axial and mean diffusivity predict myelin density in the hippocampus of pigs during early brain development, independent of sex [Original Research]. Frontiers in Neuroscience, Volume 19 - 2025. https://doi.org/10.3389/fnins.2025.1576274 

Tan, Z., Zheng, L., Bo, Y., Kambar, N., Wang, H., & Leal, C. (2025). Click Lipid Nanoparticles for the Delivery of mRNA to Metabolically Labeled Cancer Cells. Biochemistry, 64(8), 1807-1816. https://doi.org/10.1021/acs.biochem.4c00699 

Teo, Q. W., Wang, Y., Lv, H., Oade, M. S., Mao, K. J., Tan, T. J. C., Huan, Y. W., Rivera-Cardona, J., Shao, E. K., Choi, D., Wang, C., Tavakoli Dargani, Z., Brooke, C. B., Te Velthuis, A. J. W., & Wu, N. C. (2025). Probing the functional constraints of influenza A virus NEP by deep mutational scanning. Cell Rep, 44(1), 115196. https://doi.org/10.1016/j.celrep.2024.115196 

Theriault, H. S., Kimmel, H. R. C., Nunes, A. C., Paxhia, A. L., Hashim, S., Clancy, K. B. H., Underhill, G. H., & Harley, B. A. C. Matrix Tropism Influences Endometriotic Cell Attachment Patterns. Advanced Functional Materials, n/a(n/a), 02777. https://doi.org/https://doi.org/10.1002/adfm.202502777 

Thompson, G. B., Barnhouse, V. R., Bierman, S. K., & Harley, B. A. C. (2025). Influence of Hypoxia on a Biomaterial Model of the Bone Marrow Perivascular Niche. Adv Healthc Mater, 14(14), e2500858. https://doi.org/10.1002/adhm.202500858 

Timmer, K. B., Killian, M. L., & Harley, B. A. C. (2025). Mesenchymal stem cell activity across a graded scaffold-hydrogel composite biomaterial for tendon-to-bone enthesis repair. Bioact Mater, 53, 287-299. https://doi.org/10.1016/j.bioactmat.2025.07.017 

Ting-Yu Hsu, F., & Smith-Bolton, R. (2025). Myc and Tor drive growth and cell competition in the regeneration blastema of Drosophila wing imaginal discs. bioRxiv. https://doi.org/10.1101/2025.03.15.643479 

Vu, V., Sullivan, B., Hebner, E., Rahil, Z., Zou, Y., & Leckband, D. (2025). Cadherins and growth factor receptors - ligand-selective mechano-switches at cadherin junctions. J Cell Sci, 138(3). https://doi.org/10.1242/jcs.262279 

Wang, Y., Bo, Y., Liu, Y., Zhou, J., Nguyen, D., Baskaran, D., Liu, Y., & Wang, H. (2025). Metabolic labeling and targeted modulation of adipocytes [10.1039/D4BM01352B]. Biomaterials Science, 13(2), 434-445. https://doi.org/10.1039/D4BM01352B 

White, Z., Cabrera, I., Mei, L., Clevenger, M., Ochoa-Raya, A., Kapustka, I., Dominguez, J. R., Zhou, J., Koster, K. P., Anwar, S., Wang, Q., Ng, C., Sagoshi, S., Matsuo, T., Jayawardena, D., Kim, S. H., Kageyama, T., Mitchell, B. J., Rivera, D., . . . Sano, T. (2025). Gut inflammation promotes microbiota-specific CD4 T cell-mediated neuroinflammation. Nature, 643(8071), 509-518. https://doi.org/10.1038/s41586-025-09120-w 

Zhao, Z., Lucero, M. Y., Su, S., Chaney, E. J., Xu, J. J., Myszka, M., & Chan, J. (2025). Activity-based sensing reveals elevated labile copper promotes liver aging via hepatic ALDH1A1 depletion. Nature Communications, 16(1), 1794. https://doi.org/10.1038/s41467-025-56585-4 

Zou, Y., Allen, N., Rauf, E., & Leckband, D. (2025). Epidermal growth factor receptor is an essential component in E-cadherin force-transduction complexes. J Cell Sci. https://doi.org/10.1242/jcs.264350

 

Collaboration

In addition to the typical fee for training and instrument time, collaborations with the core facilities staff can be beneficial in the development of unique methods or capabilities.  Publications containing work performed in the core facilities should use these guidelines for acknowledging the core facilities. Download a copy of our brochure.

The IGB Core cooperates with the following facilities on campus to provide an extensive selection of instrumentation to campus researchers:

 

Beckman Materials Lab Molecular Biology Biotech CMtO DNA Services BioNanotech Lab

 

List of additional facilities

 

Contact

Glenn Fried

Glenn Fried

Director of Core Facilities
Core Facilities

gfried@illinois.edu
(217) 333-4328

Roy J. Carver Biotechnology Center

The Illinois Roy J. Carver Biotechnology Center (CBC) and IGB’s integrated suite of next-gen instrumentation is available for users to conduct cutting-edge Omics analyses within the three-dimensional (3D) structural, compositional and formational history of any given sample.

Samples can be composed of tissues, cells, or a combination including biomineral deposits (e.g., bones, teeth, ectopic calcification). The IGB Core Facility provides 3D micro-CT x-ray structural scans at a resolution of 3-100 microns (depending on sample size, shape and composition), coupled with micron-scale Raman characterization of the mineralogical composition of embedded biomineral deposits. High-quality histology sections and petrographic thin sections can be strategically prepared and further interrogated using optical and electron microscopes available within the IGB Core Facility.

Analysis of these samples are done through the DNA Services, Cytometry and Microscopy to Omics (CMtO), and High Performance Computing Bioinformatics (HPCBio) facilities within the CBC, able to conduct cell cytometry analysis and sorting, 10X Genomics Visium CytAssist spatial transcriptomics and proteomics from total mRNA within original 3D tissue and biomineral structure (bridging histology and genomics), and 10X Genomics Chromium high-throughput or deep single cell RNA-Seq.