Scientists have proposed a range of technological options for sustainable, productive and resilient agriculture, providing multiple ways to remove CO2 from the atmosphere and helping to directly mitigate climate change.
Five years ago, the United Nations committed to achieving the Sustainable Development Goal of Zero Hunger by 2030. Since then, however, world hunger has continued to rise. Nearly 9 percent of our global population is now undernourished, according to a 2020 report from the FAO, and climate variability is a leading factor driving us off course.
Recent research has shown that rising carbon dioxide levels will likely boost yields, but at the cost of nutrition. A new study in Plant Journal from the University of Illinois, U.S.
The societal stakes for assessing climate change impacts on agriculture and food supply are incredibly high. To meet this need, sophisticated computer models have been developed that simulate how crops grow and are influenced by their environment. They are like a three-dimensional jigsaw puzzle, with a multitude of interacting factors that must be correctly assembled.
An eight-year study of soybeans grown outdoors in a carbon dioxide-rich atmosphere like that expected by 2050 has yielded a new and worrisome finding: Higher atmospheric CO2 concentrations will boost plant growth under ideal growing conditions, but drought – expected to worsen as the climate warms and rainfall patterns change – will outweigh those benefits and cause yield losses much sooner than anticipated.
A new analysis suggests the planet can produce much more land-plant biomass – the total material in leaves, stems, roots, fruits, grains and other terrestrial plant parts – than previously thought.
The study, reported in Environmental Science and Technology, recalculates the theoretical limit of terrestrial plant productivity, and finds that it is much higher than many current estimates allow.