Skip to main content

Carl R. Woese Institute for Genomic Biology

Where Science Meets Society

Study of archaeal cells could teach us more about ourselves

Forty-two years after Carl Woese defined archaea as the third domain of life, scientists at the IGB are still learning about these ancient organisms in ways that could help us learn more about eukaryotes.

Over time, scientists have realized that archaea have close ancestral relationships to eukaryotes — the domain of life that includes animals, plants, and more.

Viruses share genes with organisms across the tree of life

A new study finds that viruses share some genes exclusively with cells that are not their hosts. The study, reported in the journal Frontiers in Microbiology, adds to the evidence that viruses swap genes with a variety of cellular organisms and are agents of diversity, researchers say.

The study looked at protein structures in viruses and across all superkingdoms, or domains, of life: from the single-celled microbes known as bacteria and archaea, to eukaryotes, a group that includes animals, plants, fungi and all other living things.

A New Tool for Genetically Engineering the Oldest Branch of Life

A new study by G. William Arends Professor of Microbiology Bill Metcalf and IGB Fellow Dipti Nayak has documented the use of CRISPR-Cas9 mediated genome editing in the third domain of life, Archaea, for the first time. Their groundbreaking work, reported in Proceedings of the National Academy of Sciences [DOI:10.1073/pnas.1618596114], has the potential to vastly accelerate future studies of these organisms, with implications for research including global climate change.

Team discovers microbes speciating

Not that long ago in a hot spring in Kamchatka, Russia, two groups of genetically indistinguishable microbes parted ways. They began evolving into different species – despite the fact that they still encountered one another in their acidic, boiling habitat and even exchanged some genes from time to time, researchers report. This is the first example of what the researchers call sympatric speciation in a microorganism.

Subscribe to archaea