Skip to main content

Carl R. Woese Institute for Genomic Biology

Where Science Meets Society

Icon Article

 

A Boeing 747 burns one gallon of jet fuel each second. A recent analysis from researchers at the University of Illinois estimate that this aircraft could fly for 10 hours on bio-jet fuel produced on 54 acres of specially engineered sugarcane.

Plants Engineered to Replace Oil in Sugarcane and Sweet Sorghum (PETROSS), funded by the Advanced Research Projects Agency - Energy (ARPA-E), has developed sugarcane that produces oil, called lipidcane, that can be converted into biodiesel or jet fuel in place of sugar that is currently used for ethanol production. With 20 percent oil - the theoretical limit - all the sugar in the plant would be replaced by oil.

Deepak Kumar, a postdoctoral researcher at the University of Illinois, and Vijay Singh, Director of the Integrated Bioprocessing Research Laboratory, led work to show the economic viability of a promising new feedback to produce sustainable bio-jet fuel. Credit: Claire Benjamin/University of Illinois
Deepak Kumar, a postdoctoral researcher at the University of Illinois, and Vijay Singh, Director of the Integrated Bioprocessing Research Laboratory, led work to show the economic viability of a promising new feedback to produce sustainable bio-jet fuel.

"Oil-to-Jet is one of the direct and efficient routes to convert bio-based feedstocks to jet fuel," said Vijay Singh, Director of the Integrated Bioprocessing Research Laboratory and Professor in the Department of Agricultural and Biological Engineering at U of I. "Reducing the feedstock cost is critical to improving process economics of producing bio-jet fuel. Lipidcane allows us to reduce feedstock cost."

This research analyzed the economic viability of crops with different levels of oil. Lipidcane with 5 percent oil produces four times more jet fuel (1,577 liters, or 416 gallons) per hectare than soybeans. Sugarcane with 20 percent oil produces more than 15 times more jet fuel (6,307 liters, or 1,666 gallons) per hectare than soybeans.

"PETROSS sugarcane is also being engineered to be more cold tolerant, potentially enabling it to be grown on an estimated 23 million acres of marginal land in the Southeastern U.S.," said PETROSS Director Stephen Long, Gutgsell Endowed Professor of Plant Biology and Crop Sciences at the IGB. "If all of this acreage was used to produce renewable jet fuel from lipid-cane, it could replace about 65 percent of national jet fuel consumption."

"We estimate that this biofuel would cost the airline industry $5.31 per gallon, which is less than most of the reported prices of renewable jet fuel produced from other oil crops or algae," said Deepak Kumar, postdoctoral researcher in the Department of Agricultural and Biological Engineering at U of I and lead analyst on the study.

This crop also produces profitable co-products: A hydrocarbon fuel is produced along with bio-jet fuel or biodiesel that can be used to produce various bioproducts. The remaining sugar (for plants with less than 20 percent oil) could be sold or used to produce ethanol. In addition, biorefineries could use lipidcane bagasse to produce steam and electricity to become self-sustainable for their energy needs and provide surplus electricity, providing environmental benefits by displacing electricity produced with fossil fuels.

The paper "Biorefinery for combined production of jet fuel and ethanol from lipid-producing sugarcane: a techno-economic evaluation" is published by Global Change Biology Bioenergy (10.1111/gcbb.12478).

PETROSS (Plants Engineered to Replace Oil in Sugarcane and Sorghum) is a research project transforming sugarcane and sweet sorghum to naturally produce large amounts of oil, a sustainable source of biofuel. PETROSS is supported by the Advanced Research Projects Agency-Energy (ARPA-E), which funds initial research for high-impact energy technologies to show proof of concept before private-sector investment.

Associated Themes
Genomic Ecology of Global Change
Tags
Written By
Claire Benjamin
Date Published
Photos By
Claire Benjamin
Related Articles