Skip to main content

Improved model better predicts crop yield, climate change effects

BY

A new computer model incorporates how microscopic pores on leaves may open in response to light—an advance that could help scientists create virtual plants to predict how higher temperatures and rising levels of carbon dioxide will affect food crops, according to a study published in a special issue of the journal Photosynthesis Research today.

News Archive

Scientists stack algorithms to improve predictions of yield-boosting crop traits

BY

Hyperspectral data comprises the full light spectrum; this dataset of continuous spectral information has many applications from understanding the health of the Great Barrier Reef to picking out more productive crop cultivars.

News Archive

Breakthrough to measure plant improvements helps boost production

BY

An international team is using advanced tools to develop crops that give farmers more options for sustainably producing more food on less land. To do this, thousands of plant prototypes must be carefully analyzed to figure out which genetic tweaks work best. In a special issue of the journal Remote Sensing of Environment, scientists have shown a new technology can more quickly scan an entire field of plants to capture improvements in their natural capacity to harvest energy from the sun.

News Archive

How to feed the world by 2050?

BY

One of the most significant challenges of the 21st Century is how to sustainably feed a growing and more affluent global population with less water and fertilizers on shrinking acreage, despite stagnating yields, threats of pests and disease, and a changing climate.

News Archive

Scientists engineer shortcut for photosynthetic glitch, boost crop growth 40%

BY

Plants convert sunlight into energy through photosynthesis; however, most crops on the planet are plagued by a photosynthetic glitch, and to deal with it, evolved an energy-expensive process called photorespiration that drastically suppresses their yield potential. Today, researchers from the University of Illinois and U.S. Department of Agriculture Agricultural Research Service report in the journal Science that crops engineered with a photorespiratory shortcut are 40 percent more productive in real-world agronomic conditions.

News Archive

RIPE project receives additional $13 million

BY

This week, families across the U.S. will gather around Thanksgiving tables in a traditional celebration of the season’s bounty. By improving how key crops transform sunlight into yield, Realizing Increased Photosynthetic Efficiency (RIPE) will one day help farmers put food on more tables worldwide, especially where it is needed most.

News Archive

Scientists boost crop production by 47% by speeding up photorespiration

BY

Plants such as soybeans and wheat waste between 20 and 50 percent of their energy recycling toxic chemicals created when the enzyme Rubisco—the most prevalent enzyme in the world—grabs oxygen molecules instead of carbon dioxide molecules. Increasing production of a common, naturally occurring protein in plant leaves could boost the yields of major food crops by almost 50 percent, according to a new study led by scientists at the University of Essex published today in Plant Biotechnology Journal.

News Archive

Cassava breeding hasn’t improved photosynthesis or yield potential

BY

Cassava is a staple in the diet of more than one billion people across 105 countries, yet this “orphaned crop” has received little attention compared to popular crops like corn and soybeans. While advances in breeding have helped cassava withstand pests and diseases, cassava yields no more today than it did in 1963. Corn yields, by comparison, have more than doubled.

News Archive

Scientists engineer crops to conserve water, resist drought

BY

Agriculture already monopolizes 90 percent of global freshwater—yet production still needs to dramatically increase to feed and fuel this century’s growing population. For the first time, scientists have improved how a crop uses water by 25 percent without compromising yield by altering the expression of one gene that is found in all plants, as reported in Nature Communications.

News Archive

Light green plants save nitrogen without sacrificing photosynthetic efficiency

BY

The top leaves of crops absorb far more light than they can use, starving lower leaves of light. Scientists designed plants with light green leaves with hopes of allowing more light to penetrate the crop canopy and increase overall light use efficiency and yield. This strategy was tested in a recent modeling study that found leaves with reduced chlorophyll content do not actually improve canopy-level photosynthesis, but instead, conserve a significant amount of nitrogen that the plant might be able to reinvest to improve light use efficiency and increase yield.

News Archive
Subscribe to RIPE