Skip to main content

Illinois IGB

Brian Cunningham

Portable, point-of-care COVID-19 test could bypass the lab

August 31, 2020

As COVID-19 continues to spread, bottlenecks in supplies and laboratory personnel have led to long waiting times for results in some areas. In a new study, University of Illinois, Urbana-Champaign researchers have demonstrated a prototype of a rapid COVID-19 molecular test and a simple-to-use, portable instrument for reading the results with a smartphone in 30 minutes, which could enable point-of-care diagnosis without needing to send samples to a lab.


August 31, 2020


Related Articles

Personalizing Cancer Diagnostics

August 26, 2020

When assessing whether or not a tumor is benign or cancerous, a needle biopsy is the usual method of diagnosis. The tissue can then be analyzed to determine what mutations are present that are specific to the patient. Because this method is invasive, it’s generally only used once. During and after chemotherapy, imaging tests are used to monitor the size of the tumor; however, imaging only shows the physical characteristics of the tumor – it fails to monitor what is actually happening to the cells.


August 26, 2020


Related Articles

Faculty Receive Three NSF Rapid Grants For COVID-19 Testing

May 7, 2020

Three Nick Holonyak Jr., Micro and Nanotechnology Lab (HMNTL) and IGB faculty members have received NSF Rapid Response Research (RAPID) program grants, all of which aim to shorten the amount of time it takes to process a COVID-19 test. Current tests can take as long as five days for results to be returned to the patient. Although more rapid nucleic acid tests that can give a result within an hour have become available, there are reports of a high rate of false negatives among these tests.


May 7, 2020


Related Articles

Inexpensive, portable detector identifies pathogens in minutes

April 23, 2020

Most viral test kits rely on labor- and time-intensive laboratory preparation and analysis techniques; for example, tests for the novel coronavirus can take days to detect the virus from nasal swabs. Now, researchers have demonstrated an inexpensive yet sensitive smartphone-based testing device for viral and bacterial pathogens that takes about 30 minutes to complete. The roughly $50 smartphone accessory could reduce the pressure on testing laboratories during a pandemic such as COVID-19.


April 23, 2020


Related Articles

New Center for Genomic Diagnostics will reimagine disease detection technologies

January 29, 2020

A new research center at the University of Illinois directed by Donald Biggar Willett Professor in Engineering Brian Cunningham aims to revolutionize diagnostics and personalized medicine, developing technologies that are at once more accurate, more affordable, and more practical for routine care.


January 29, 2020


Related Articles

Smartphone diagnostics kit for infectious diseases

November 11, 2019

Infectious diseases such as Zika and Dengue remain a top contributor to death and disability across the globe, according to the World Health Organization. Diagnosing and treating these diseases, which often have similar symptoms, is especially difficult in developing countries, where access to health care and laboratories is often limited.


November 11, 2019


Related Articles

New NIH-funded research aims to improve prostate cancer outcomes

March 30, 2018

University of Illinois at Urbana-Champaign researchers recently received a $1.8 million grant from the National Institutes of Health (NIH) to develop a new assay technology that could determine the effectiveness of cancer drug treatments and aid in disease prognosis. Led by Illinois Bioengineering Assistant Professor Andrew Smith, the team is focusing on detecting nucleic acid-based biomarkers in a single drop of a cancer patient's blood.


March 30, 2018


Related Articles

New handheld spectral analyzer uses smartphone to detect disease

August 11, 2017

Researchers at the University of Illinois at Urbana-Champaign have developed technology that enables a smartphone to perform lab-grade medical diagnostic tests that typically require large, expensive instruments. Costing only $550, the spectral transmission-reflectance-intensity (TRI)-Analyzer from Bioengineering and Electrical & Computer Engineering Professor Brian Cunningham's lab attaches to a smartphone and analyzes patient blood, urine, or saliva samples as reliably as clinic-based instruments that cost thousands of dollars.


August 11, 2017


Related Articles

Subscribe to Brian Cunningham