Skip to main content

Carl R. Woese Institute for Genomic Biology

Where Science Meets Society

"Stable marriages" between microbes, nutrients they eat may explain diverse yet stable communities

A mathematical model created by IGB researchers could help scientists better understand an intriguing characteristic of microbial communities: their ability to achieve stability despite being so diverse.

Microbial communities are groups of microorganisms that exist in a variety of environments — in the soil, in the oceans, and in our bodies. Though these communities are complex and diverse, they are able to form stable ecosystems.

Researchers use economic concept to understand microbial communities

A popular economic concept is helping IGB researchers understand how microbial communities operate.

Microbial communities are in our bodies, in the soil, in forests and oceans, and more. They’re made up of microorganisms that interact with each other in various ways, and these interactions can affect the surrounding environment.

Researchers like Sergei Maslov, a Bliss Faculty Scholar and professor of bioengineering in the Biocomplexity theme, want to understand microbial communities so they can learn how to manipulate them.

In microbe populations, bioengineers find balance of opposing genomic forces

Sergei Maslov, a professor of bioengineering and physics at the University of Illinois, sees a “universe in a grain of sand.” His research seeks to explore that universe by focusing on the genomic diversity of its constituents: the millions of microbes that thrive and reproduce within it.

Subscribe to Sergei Maslov